Table Of Contents
Table Of Contents

Source code for gluoncv.model_zoo.model_store

"""Model store which provides pretrained models."""
from __future__ import print_function

__all__ = ['get_model_file', 'purge']
import os
import zipfile

from ..utils import download, check_sha1

_model_sha1 = {name: checksum for checksum, name in [
    ('44335d1f0046b328243b32a26a4fbd62d9057b45', 'alexnet'),
    ('f27dbf2dbd5ce9a80b102d89c7483342cd33cb31', 'densenet121'),
    ('b6c8a95717e3e761bd88d145f4d0a214aaa515dc', 'densenet161'),
    ('2603f878403c6aa5a71a124c4a3307143d6820e9', 'densenet169'),
    ('1cdbc116bc3a1b65832b18cf53e1cb8e7da017eb', 'densenet201'),
    ('a5050dbcbfc54908fc1b7700698eb7ffbc150417', 'inceptionv3'),
    ('37c1c90b56800303a66934487fbf017bca8bba00', 'xception'),
    ('f0046a3da4e150b85da58ea31913dbb86e7540d1', 'mobilenet0.25'),
    ('0130d2aa2f7e3a63db35579b243e25f512172371', 'mobilenet0.5'),
    ('84c801e27b1ac5040b6e945c0d1f8d49e9a59f3d', 'mobilenet0.75'),
    ('efbb2ca3881998d5a8c5cb6c457a28c1e085fed5', 'mobilenet1.0'),
    ('f9952bcde7a7982947ac5240546e1c1c8f057370', 'mobilenetv2_1.0'),
    ('b56e3d1c33eb52d0b90678db4ce6c5ca6c9a6704', 'mobilenetv2_0.75'),
    ('0803818513599fa1329524ee3607b708b4a4630f', 'mobilenetv2_0.5'),
    ('9b1d2cc38fed4cd171a7f7a0d17fe1a905573887', 'mobilenetv2_0.25'),
    ('eaa44578554ddffaf2a2630ced9093181ff79688', 'mobilenetv3_large'),
    ('33c100a740c0a278ec06e8640b19f52b744d1f11', 'mobilenetv3_small'),
    ('a0666292f0a30ff61f857b0b66efc0228eb6a54b', 'resnet18_v1'),
    ('48216ba99a8b1005d75c0f3a0c422301a0473233', 'resnet34_v1'),
    ('cc729d95031ca98cf2ff362eb57dee4d9994e4b2', 'resnet50_v1'),
    ('d988c13d6159779e907140a638c56f229634cb02', 'resnet101_v1'),
    ('acfd09703b113143af9c33898bad8b6154fd6fb0', 'resnet152_v1'),
    ('a81db45fd7b7a2d12ab97cd88ef0a5ac48b8f657', 'resnet18_v2'),
    ('9d6b80bbc35169de6b6edecffdd6047c56fdd322', 'resnet34_v2'),
    ('ecdde35339c1aadbec4f547857078e734a76fb49', 'resnet50_v2'),
    ('18e93e4f48947e002547f50eabbcc9c83e516aa6', 'resnet101_v2'),
    ('f2695542de38cf7e71ed58f02893d82bb409415e', 'resnet152_v2'),
    ('264ba4970a0cc87a4f15c96e25246a1307caf523', 'squeezenet1.0'),
    ('33ba0f93753c83d86e1eb397f38a667eaf2e9376', 'squeezenet1.1'),
    ('dd221b160977f36a53f464cb54648d227c707a05', 'vgg11'),
    ('ee79a8098a91fbe05b7a973fed2017a6117723a8', 'vgg11_bn'),
    ('6bc5de58a05a5e2e7f493e2d75a580d83efde38c', 'vgg13'),
    ('7d97a06c3c7a1aecc88b6e7385c2b373a249e95e', 'vgg13_bn'),
    ('e660d4569ccb679ec68f1fd3cce07a387252a90a', 'vgg16'),
    ('7f01cf050d357127a73826045c245041b0df7363', 'vgg16_bn'),
    ('ad2f660d101905472b83590b59708b71ea22b2e5', 'vgg19'),
    ('f360b758e856f1074a85abd5fd873ed1d98297c3', 'vgg19_bn'),
    ('4fa2e1ad96b8c8d1ba9e5a43556cd909d70b3985', 'vgg16_atrous'),
    ('0e169fbb64efdee6985c3c175ec4298c4bda0298', 'ssd_300_vgg16_atrous_voc'),
    ('daf8181b615b480236fcb8474545077891276945', 'ssd_512_vgg16_atrous_voc'),
    ('9c8b225a552614e4284a0f647331bfdc6940eb4a', 'ssd_512_resnet50_v1_voc'),
    ('2cc0f93edf1467f428018cc7261d3246dfa15259', 'ssd_512_resnet101_v2_voc'),
    ('37c180765a4eb3e67751d6bacac47bb9156f5fff', 'ssd_512_mobilenet1.0_voc'),
    ('b302ad8a8660345c368448141d8acf30b5a3801d', 'ssd_300_vgg16_atrous_coco'),
    ('5c86064290c05eccbdd88475376c71c595c8325c', 'ssd_512_vgg16_atrous_coco'),
    ('c48351620d4f0cbc49e4f7a84c8e67ef8fdc6e09', 'ssd_512_resnet50_v1_coco'),
    ('da9756faa5b9b4e34dedcf83ee0733d5895796ad', 'ssd_512_mobilenet1.0_coco'),
    ('447328d89d70ae1e2ca49226b8d834e5a5456df3', 'faster_rcnn_resnet50_v1b_voc'),
    ('5b4690fb7c5b62c44fb36c67d0642b633697f1bb', 'faster_rcnn_resnet50_v1b_coco'),
    ('a465eca35e78aba6ebdf99bf52031a447e501063', 'faster_rcnn_resnet101_v1d_coco'),
    ('233572743bc537291590f4edf8a0c17c14b234bb', 'faster_rcnn_fpn_resnet50_v1b_coco'),
    ('977c247d70c33d1426f62147fc0e04dd329fc5ec', 'faster_rcnn_fpn_bn_resnet50_v1b_coco'),
    ('1194ab4ec6e06386aadd55820add312c8ef59c74', 'faster_rcnn_fpn_resnet101_v1d_coco'),
    ('e071cf1550bc0331c218a9072b59e9550595d1e7', 'mask_rcnn_resnet18_v1b_coco'),
    ('a3527fdc2cee5b1f32a61e5fd7cda8fb673e86e5', 'mask_rcnn_resnet50_v1b_coco'),
    ('4a3249c584f81c2a9b5d852b742637cd692ebdcb', 'mask_rcnn_resnet101_v1d_coco'),
    ('14a922c38b0b196fdb1f7141be4666c10476f426', 'mask_rcnn_fpn_resnet18_v1b_coco'),
    ('1364d0afe4de575af5d4389d50c2dbf22449ceac', 'mask_rcnn_fpn_resnet50_v1b_coco'),
    ('89c7d8669b677a05c6eaa25375ead9a174109c69', 'mask_rcnn_fpn_resnet101_v1d_coco'),
    ('121e1579d811b091940b3b1fa033e1f0d1dca40f', 'cifar_resnet20_v1'),
    ('4f2d18804c94f2d283b8b45256d048bd3d6dd479', 'cifar_resnet20_v2'),
    ('2fb251e60babdceb103e9659b3baa0dea20a14d7', 'cifar_resnet56_v1'),
    ('0a3e74104ec7bcfffefe2d9d5cc1f8e74311ec51', 'cifar_resnet56_v2'),
    ('a0e1f860475bf5369f6da07e0c2e03a4ae9cff9c', 'cifar_resnet110_v1'),
    ('bf160f8b3cb3884a1ea871739f3c8e151e114159', 'cifar_resnet110_v2'),
    ('7c07b5ba6e850f9c37ca1e57c0a2e529455cc2e4', 'cifar_wideresnet16_10'),
    ('4a3466aadd4c3ddbcb968bca862d0e59d6f15ec1', 'cifar_wideresnet28_10'),
    ('085ca2afabbe0ddfe87d0edc5408bcfcfbffd414', 'cifar_wideresnet40_8'),
    ('e8ff9f4f9cb319dfbf524d01e487af9a7f8a3cf5', 'cifar_resnext29_16x64d'),
    ('2d9d980c990442f826f20781ed039851e78dabe3', 'resnet18_v1b'),
    ('8e16b84814e84f64d897854003f049872991eaa6', 'resnet34_v1b'),
    ('0ecdba34691be172036ddf244ff1b2eade75ffde', 'resnet50_v1b'),
    ('48ddf358d5acc879f76740dae695be67d96beea6', 'resnet50_v1b_gn'),
    ('a455932aa95cb7dcfa05fd040b9b5a5660733c39', 'resnet101_v1b'),
    ('a5a61ee1ce5ab7c09720775b223360f3c60e211d', 'resnet152_v1b'),
    ('2a4e070854db538595cc7ee02e1a914bdd49ca02', 'resnet50_v1c'),
    ('064858f23f9878bfbbe378a88ccb25d612b149a1', 'resnet101_v1c'),
    ('75babab699e1c93f5da3c1ce4fd0092d1075f9a0', 'resnet152_v1c'),
    ('117a384ecf61490eb31ea147eb0e61e6d2b8a449', 'resnet50_v1d'),
    ('1b2b825feff86b0354642a4ab59f9b6e35e47338', 'resnet101_v1d'),
    ('cddbc86ff24a5544f57242ded0acb14ef1fbd437', 'resnet152_v1d'),
    ('25a187fa281ddc98afbcd0cc0f0646885b874b80', 'resnet50_v1s'),
    ('bd93a83c05f709a803b1221aeff0b028e6eebb03', 'resnet101_v1s'),
    ('cf74621d988ad06c6c6aa44f5597e5b600a966cc', 'resnet152_v1s'),
    ('766cdf9cc3e5b980b141643f054db5b48863f634', 'fcn_resnet101_coco'),
    ('12c2b9b3be7d4e133e52477150a9b3e616626a82', 'fcn_resnet101_voc'),
    ('3479525af7bdbf345e74e150aaae2e48174c0c5f', 'fcn_resnet50_ade'),
    ('d544440a35586f662ed1a5405ab9aa89cd750558', 'fcn_resnet101_ade'),
    ('ed817f76086abb4c3404af62ec1b5487c67642b7', 'deeplab_resnet101_coco'),
    ('311ed22c63f3ac28b5f1e1663c458f26600e62da', 'deeplab_resnet101_voc'),
    ('83247aaeeded6988790cd93ac93151514094846f', 'deeplab_resnet152_coco'),
    ('d35bea8817935d1ab310ef1e6dd06bb18c2d5f0d', 'deeplab_resnet152_voc'),
    ('c7789b237adc7253405bee57c84d53b15db45942', 'deeplab_resnet50_ade'),
    ('bf1584dfcec12063eff3075ee643e181c0f6d443', 'deeplab_resnet101_ade'),
    ('09f89cad0e107cb2bffdb1b07706ba31798096f2', 'psp_resnet101_coco'),
    ('2c2f4e1c2b11461b52598a4b2038bccbcfc166eb', 'psp_resnet101_voc'),
    ('3f220f537400dfa607c3d041ed3b172db39b0b01', 'psp_resnet50_ade'),
    ('240a4758b506447faf7c55cd7a7837d66f5039a6', 'psp_resnet101_ade'),
    ('0f49fb59180c4d91305b858380a4fd6eaf068b6c', 'psp_resnet101_citys'),
    ('ef2bb40ad8f8f59f451969b2fabe4e548394e80a', 'deeplab_v3b_plus_wideresnet_citys'),
    ('f5ece5ce1422eeca3ce2908004e469ffdf91fd41', 'yolo3_darknet53_voc'),
    ('3b47835ac3dd80f29576633949aa58aee3094353', 'yolo3_mobilenet1.0_voc'),
    ('66dbbae67be8f1e3cd3c995ce626a2bdc89769c6', 'yolo3_mobilenet1.0_coco'),
    ('09767802230b45af1c27697a2dad6d1ebaacc1e2', 'yolo3_darknet53_coco'),
    ('2189ea49720a116dead245b9b252301cffa18d28', 'darknet53'),
    ('b5538ef10557243511b9b46063aa4c40790d74ba', 'senet_154'),
    ('4ecf62e29336e0cbc5a2f844652635a330928b5a', 'resnext50_32x4d'),
    ('8654ca5d0ba30a7868c5b42a7d4cc0ff2ba04dbc', 'resnext101_32x4d'),
    ('2f0d1c9d343d140775bfa7548dd3a881a35855de', 'resnext101_64x4d'),
    ('7906e0e16013ef8d195cbc05463cc37783ec7a8a', 'se_resnext50_32x4d'),
    ('688e238985d45a38803c62cf345af2813d0e8aa0', 'se_resnext101_32x4d'),
    ('11c50114a0483e27e74dc4236904254ef05b634b', 'se_resnext101_64x4d'),
    ('f63d42ac8f83b239d4e08b636b888b8e50cd066d', 'simple_pose_resnet18_v1b'),
    ('e2c7b1adea31264bc9220511308b4efa89c6fc50', 'simple_pose_resnet50_v1b'),
    ('b7ec0de1a34eb718efd4a84339cc1547ead88cbe', 'simple_pose_resnet101_v1b'),
    ('ef4e033612a5fca6fc69e54c87da3ba3866d533e', 'simple_pose_resnet152_v1b'),
    ('ba2675b6a43fc31601f0e99311b0bb115369bc82', 'simple_pose_resnet50_v1d'),
    ('1f8f48fd49a23bcc73c1cd736bdc639cd1434489', 'simple_pose_resnet101_v1d'),
    ('3ca502ea8eaaa15f4f972d5cf139167d15ffa798', 'simple_pose_resnet152_v1d'),
    ('dd6644ebca0d320eb460342d1ed6e1f0793e3946', 'mobile_pose_resnet18_v1b'),
    ('ec8809df9adbeefc022e5977fda60c4e4a58c3ac', 'mobile_pose_resnet50_v1b'),
    ('b399bac75ebbd1b9d04a16906bddc64f1e33496b', 'mobile_pose_mobilenet1.0'),
    ('4acdc130ebee695b1181fb7e4eee8f2c4d91a614', 'mobile_pose_mobilenetv2_1.0'),
    ('1ca004dc5ab2bd0e10d782734d3efbefff23180c', 'mobile_pose_mobilenetv3_large'),
    ('b1b148a9650cd5dbed07e3177436185fec1da5b7', 'mobile_pose_mobilenetv3_small'),
    ('54f7742b1f8939ef8e59ede3469bfa5eb6e247fa', 'resnet18_v1b_2.6x'),
    ('a230c33f7966ab761597328686b28d0545e4ea30', 'resnet50_v1d_1.8x'),
    ('0d3e69bb033d1375c3734419bbc653c3a474ea53', 'resnet50_v1d_3.6x'),
    ('9982ae4985b14e1c0ab25342a9f08bc4773b3998', 'resnet50_v1d_5.9x'),
    ('6a25eeceb7d27bd9c05fa2bf250c55d3960ad4c7', 'resnet50_v1d_8.8x'),
    ('a872796b63fb883116831db3454711421a628154', 'resnet101_v1d_1.9x'),
    ('712fccb185921a596baebe9246ff6c994b88591b', 'resnet101_v1d_2.2x'),
    ('d6dc1bbaaf3cbe0be19f02362706393f62ce76fa', 'vgg16_ucf101'),
    ('13ef5c3bd40141f11c5b4e471f8f2ad0c1ac6299', 'inceptionv3_ucf101'),
    ('de56b871543847d586deeca488b5bfe1b77bb5c5', 'alpha_pose_resnet101_v1b_coco'),
    ('8a4a6946893de23937b5e5e4a1a449800d57ff71', 'inceptionv3_kinetics400'),
    ('c7c89366fb4410c0aeb34827795f7dab9423f950', 'googlenet'),
    ('254ae7d96e9102d496ad325ce904cbe382cb40b0', 'i3d_resnet50_v1_kinetics400'),
    ('c57214075f6611717ebf9fe5ce7f6e2618720551', 'i3d_resnet101_v1_kinetics400'),
    ('f36bdeed20b3825cf0ed186dd26f056d193cca4e', 'i3d_inceptionv1_kinetics400'),
    ('bbd4185a823a3af2741b033db81dd6e35fc04bac', 'i3d_inceptionv3_kinetics400'),
    ('80ee0c6bef8b0240ec88273531cd7f43e3f6b65d', 'resnet50_v1b_sthsthv2'),
    ('01961e4cccf6405cd1342670b9525c21c578c9d4', 'i3d_resnet50_v1_sthsthv2'),
    ('382433ba94ff4b5e938bc6729b06ab036ad136de', 'i3d_nl5_resnet50_v1_kinetics400'),
    ('26b41dd6b04b3cd17057b3bff0ff9800ed8f6d7e', 'i3d_nl10_resnet50_v1_kinetics400'),
    ('8b25d02f327838b71d0d986f3394753c15fd40fd', 'i3d_nl5_resnet101_v1_kinetics400'),
    ('77d7ed77ca63c56660b188fd9165a5a3eb6ffe4d', 'i3d_nl10_resnet101_v1_kinetics400'),
    ('2ec6bf01a55af38579380e6531d0ecc816862abe', 'i3d_resnet50_v1_hmdb51'),
    ('760d0981094787b8789ee4a8c382d09d493c7413', 'i3d_resnet50_v1_ucf101'),
    ('682591e23ce4b92fbd3222c0710ebb52166fddca', 'resnet50_v1b_hmdb51'),
]}

apache_repo_url = 'https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/'
_url_format = '{repo_url}gluon/models/{file_name}.zip'


def short_hash(name):
    if name not in _model_sha1:
        raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
    return _model_sha1[name][:8]


def get_model_file(name, tag=None, root=os.path.join('~', '.mxnet', 'models')):
    r"""Return location for the pretrained on local file system.

    This function will download from online model zoo when model cannot be found or has mismatch.
    The root directory will be created if it doesn't exist.

    Parameters
    ----------
    name : str
        Name of the model.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Returns
    -------
    file_path
        Path to the requested pretrained model file.
    """
    if 'MXNET_HOME' in os.environ:
        root = os.path.join(os.environ['MXNET_HOME'], 'models')

    use_tag = isinstance(tag, str)
    if use_tag:
        file_name = '{name}-{short_hash}'.format(name=name,
                                                 short_hash=tag)
    else:
        file_name = '{name}-{short_hash}'.format(name=name,
                                                 short_hash=short_hash(name))
    root = os.path.expanduser(root)
    file_path = os.path.join(root, file_name + '.params')
    if use_tag:
        sha1_hash = tag
    else:
        sha1_hash = _model_sha1[name]
    if os.path.exists(file_path):
        if check_sha1(file_path, sha1_hash):
            return file_path
        else:
            print('Mismatch in the content of model file detected. Downloading again.')
    else:
        print('Model file is not found. Downloading.')

    if not os.path.exists(root):
        os.makedirs(root)

    zip_file_path = os.path.join(root, file_name + '.zip')
    repo_url = os.environ.get('MXNET_GLUON_REPO', apache_repo_url)
    if repo_url[-1] != '/':
        repo_url = repo_url + '/'
    download(_url_format.format(repo_url=repo_url, file_name=file_name),
             path=zip_file_path,
             overwrite=True)
    with zipfile.ZipFile(zip_file_path) as zf:
        zf.extractall(root)
    os.remove(zip_file_path)

    if check_sha1(file_path, sha1_hash):
        return file_path
    else:
        raise ValueError('Downloaded file has different hash. Please try again.')


def purge(root=os.path.join('~', '.mxnet', 'models')):
    r"""Purge all pretrained model files in local file store.

    Parameters
    ----------
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.
    """
    root = os.path.expanduser(root)
    files = os.listdir(root)
    for f in files:
        if f.endswith(".params"):
            os.remove(os.path.join(root, f))


[docs]def pretrained_model_list(): """Get list of model which has pretrained weights available.""" _renames = { 'resnet18_v1b_2.6x': 'resnet18_v1b_0.89', 'resnet50_v1d_1.8x': 'resnet50_v1d_0.86', 'resnet50_v1d_3.6x': 'resnet50_v1d_0.48', 'resnet50_v1d_5.9x': 'resnet50_v1d_0.37', 'resnet50_v1d_8.8x': 'resnet50_v1d_0.11', 'resnet101_v1d_1.9x': 'resnet101_v1d_0.76', 'resnet101_v1d_2.2x': 'resnet101_v1d_0.73', } return [_renames[x] if x in _renames else x for x in _model_sha1.keys()]