Table Of Contents
Table Of Contents

Source code for gluoncv.nn.coder

# pylint: disable=arguments-differ, missing-docstring
"""Encoder and Decoder functions.
Encoders are used during training, which assign training targets.
Decoders are used during testing/validation, which convert predictions back to
normal boxes, etc.
"""
from __future__ import absolute_import

import numpy as np
from mxnet import gluon
from mxnet import nd

from .bbox import BBoxCornerToCenter, NumPyBBoxCornerToCenter

try:
    import cython_bbox
except ImportError:
    cython_bbox = None


[docs]class NumPyNormalizedBoxCenterEncoder(object): """Encode bounding boxes training target with normalized center offsets using numpy. Input bounding boxes are using corner type: `x_{min}, y_{min}, x_{max}, y_{max}`. Parameters ---------- stds : array-like of size 4 Std value to be divided from encoded values, default is (0.1, 0.1, 0.2, 0.2). means : array-like of size 4 Mean value to be subtracted from encoded values, default is (0., 0., 0., 0.). """ def __init__(self, stds=(0.1, 0.1, 0.2, 0.2), means=(0., 0., 0., 0.)): super(NumPyNormalizedBoxCenterEncoder, self).__init__() assert len(stds) == 4, "Box Encoder requires 4 std values." self._stds = stds self._means = means self.corner_to_center = NumPyBBoxCornerToCenter(split=True) def __call__(self, samples, matches, anchors, refs): """Not HybridBlock due to use of matches.shape Parameters ---------- samples: (B, N) value +1 (positive), -1 (negative), 0 (ignore) matches: (B, N) value range [0, M) anchors: (B, N, 4) encoded in corner refs: (B, M, 4) encoded in corner Returns ------- targets: (B, N, 4) transform anchors to refs picked according to matches masks: (B, N, 4) only positive anchors has targets """ if cython_bbox is not None: return cython_bbox.np_normalized_box_encoder(samples, matches, anchors, refs, np.array(self._means, dtype=np.float32), np.array(self._stds, dtype=np.float32)) # refs [B, M, 4], anchors [B, N, 4], samples [B, N], matches [B, N] ref_boxes = np.repeat(refs.reshape((refs.shape[0], 1, -1, 4)), axis=1, repeats=matches.shape[1]) # refs [B, N, M, 4] -> [B, N, 4] ref_boxes = \ ref_boxes[:, range(matches.shape[1]), matches, :] \ .reshape(matches.shape[0], -1, 4) # g [B, N, 4], a [B, N, 4] -> codecs [B, N, 4] g = self.corner_to_center(ref_boxes) a = self.corner_to_center(anchors) t0 = ((g[0] - a[0]) / a[2] - self._means[0]) / self._stds[0] t1 = ((g[1] - a[1]) / a[3] - self._means[1]) / self._stds[1] t2 = (np.log(g[2] / a[2]) - self._means[2]) / self._stds[2] t3 = (np.log(g[3] / a[3]) - self._means[3]) / self._stds[3] codecs = np.concatenate((t0, t1, t2, t3), axis=2) # samples [B, N] -> [B, N, 1] -> [B, N, 4] -> boolean temp = np.tile(samples.reshape((samples.shape[0], -1, 1)), reps=(1, 1, 4)) > 0.5 # fill targets and masks [B, N, 4] targets = np.where(temp, codecs, 0.0) masks = np.where(temp, 1.0, 0.0) return targets, masks
[docs]class NormalizedBoxCenterEncoder(gluon.HybridBlock): """Encode bounding boxes training target with normalized center offsets. Input bounding boxes are using corner type: `x_{min}, y_{min}, x_{max}, y_{max}`. Parameters ---------- stds : array-like of size 4 Std value to be divided from encoded values, default is (0.1, 0.1, 0.2, 0.2). means : array-like of size 4 Mean value to be subtracted from encoded values, default is (0., 0., 0., 0.). """ def __init__(self, stds=(0.1, 0.1, 0.2, 0.2), means=(0., 0., 0., 0.), **kwargs): super(NormalizedBoxCenterEncoder, self).__init__(**kwargs) assert len(stds) == 4, "Box Encoder requires 4 std values." assert len(means) == 4, "Box Encoder requires 4 std values." self._means = means self._stds = stds with self.name_scope(): self.corner_to_center = BBoxCornerToCenter(split=True) # pylint: disable=arguments-differ
[docs] def hybrid_forward(self, F, samples, matches, anchors, refs): """Not HybridBlock due to use of matches.shape Parameters ---------- samples: (B, N) value +1 (positive), -1 (negative), 0 (ignore) matches: (B, N) value range [0, M) anchors: (B, N, 4) encoded in corner refs: (B, M, 4) encoded in corner Returns ------- targets: (B, N, 4) transform anchors to refs picked according to matches masks: (B, N, 4) only positive anchors has targets """ # TODO(zhreshold): batch_pick, take multiple elements? # refs [B, M, 4], anchors [B, N, 4], samples [B, N], matches [B, N] # refs [B, M, 4] -> reshape [B, 1, M, 4] -> repeat [B, N, M, 4] ref_boxes = F.broadcast_like(refs.reshape((0, 1, -1, 4)), matches, lhs_axes=1, rhs_axes=1) # refs [B, N, M, 4] -> 4 * [B, N, M] ref_boxes = F.split(ref_boxes, axis=-1, num_outputs=4, squeeze_axis=True) # refs 4 * [B, N, M] -> pick from matches [B, N, 1] -> concat to [B, N, 4] ref_boxes = F.concat(*[F.pick(ref_boxes[i], matches, axis=2).reshape((0, -1, 1)) \ for i in range(4)], dim=2) # transform based on x, y, w, h # g [B, N, 4], a [B, N, 4] -> codecs [B, N, 4] g = self.corner_to_center(ref_boxes) a = self.corner_to_center(anchors) t0 = ((g[0] - a[0]) / a[2] - self._means[0]) / self._stds[0] t1 = ((g[1] - a[1]) / a[3] - self._means[1]) / self._stds[1] t2 = (F.log(g[2] / a[2]) - self._means[2]) / self._stds[2] t3 = (F.log(g[3] / a[3]) - self._means[3]) / self._stds[3] codecs = F.concat(t0, t1, t2, t3, dim=2) # samples [B, N] -> [B, N, 1] -> [B, N, 4] -> boolean temp = F.tile(samples.reshape((0, -1, 1)), reps=(1, 1, 4)) > 0.5 # fill targets and masks [B, N, 4] targets = F.where(temp, codecs, F.zeros_like(codecs)) masks = F.where(temp, F.ones_like(temp), F.zeros_like(temp)) return targets, masks
[docs]class NormalizedPerClassBoxCenterEncoder(gluon.HybridBlock): """Encode bounding boxes training target with normalized center offsets. Input bounding boxes are using corner type: `x_{min}, y_{min}, x_{max}, y_{max}`. Parameters ---------- max_pos : int, default is 128 Upper bound of Number of positive samples. per_device_batch_size : int, default is 1 Per device batch size stds : array-like of size 4 Std value to be divided from encoded values, default is (0.1, 0.1, 0.2, 0.2). means : array-like of size 4 Mean value to be subtracted from encoded values, default is (0., 0., 0., 0.). """ def __init__(self, num_class, max_pos=128, per_device_batch_size=1, stds=(0.1, 0.1, 0.2, 0.2), means=(0., 0., 0., 0.)): super(NormalizedPerClassBoxCenterEncoder, self).__init__() assert len(stds) == 4, "Box Encoder requires 4 std values." assert num_class > 0, "Number of classes must be positive" self._num_class = num_class self._max_pos = max_pos self._batch_size = per_device_batch_size with self.name_scope(): self.class_agnostic_encoder = NormalizedBoxCenterEncoder(stds=stds, means=means) if 'box_encode' in nd.contrib.__dict__: self.means = self.params.get_constant('means', means) self.stds = self.params.get_constant('stds', stds)
[docs] def hybrid_forward(self, F, samples, matches, anchors, labels, refs, means=None, stds=None): """Encode BBox One entry per category Parameters ---------- samples: (B, N) value +1 (positive), -1 (negative), 0 (ignore) matches: (B, N) value range [0, M) anchors: (B, N, 4) encoded in corner labels: (B, N) value range [0, self._num_class), excluding background refs: (B, M, 4) encoded in corner Returns ------- targets: (B, N_pos, C, 4) transform anchors to refs picked according to matches masks: (B, N_pos, C, 4) only positive anchors of the correct class has targets indices : (B, N_pos) positive sample indices """ # refs [B, M, 4], anchors [B, N, 4], samples [B, N], matches [B, N] # encoded targets [B, N, 4], masks [B, N, 4] if 'box_encode' in F.contrib.__dict__: targets, masks = F.contrib.box_encode(samples, matches, anchors, refs, means, stds) else: targets, masks = self.class_agnostic_encoder(samples, matches, anchors, refs) # labels [B, M] -> [B, N, M] ref_labels = F.broadcast_like(labels.reshape((0, 1, -1)), matches, lhs_axes=1, rhs_axes=1) # labels [B, N, M] -> pick from matches [B, N] -> [B, N, 1] ref_labels = F.pick(ref_labels, matches, axis=2).reshape((0, -1)).expand_dims(2) # boolean array [B, N, C] same_cids = F.broadcast_equal(ref_labels, F.reshape(F.arange(self._num_class), shape=(1, 1, -1))) # reduce box targets to positive samples only indices = F.slice_axis( F.reshape(F.argsort(F.slice_axis(masks, axis=-1, begin=0, end=1), axis=1, is_ascend=False), (self._batch_size, -1)), axis=1, begin=0, end=self._max_pos) targets_tmp = [] masks_tmp = [] same_cids_tmp = [] for i in range(self._batch_size): ind = F.slice_axis(indices, axis=0, begin=i, end=i + 1).squeeze(axis=0) target = F.slice_axis(targets, axis=0, begin=i, end=i + 1).squeeze(axis=0) mask = F.slice_axis(masks, axis=0, begin=i, end=i + 1).squeeze(axis=0) same_cid = F.slice_axis(same_cids, axis=0, begin=i, end=i + 1).squeeze(axis=0) targets_tmp.append(F.take(target, ind).expand_dims(axis=0)) masks_tmp.append(F.take(mask, ind).expand_dims(axis=0)) same_cids_tmp.append(F.take(same_cid, ind).expand_dims(axis=0)) targets = F.concat(*targets_tmp, dim=0) masks = F.concat(*masks_tmp, dim=0) same_cids = F.concat(*same_cids_tmp, dim=0).expand_dims(3) # targets, masks [B, N_pos, C, 4] all_targets = F.broadcast_axes(targets.expand_dims(2), axis=2, size=self._num_class) all_masks = F.broadcast_mul(masks.expand_dims(2), F.broadcast_axes(same_cids, axis=3, size=4)) return all_targets, all_masks, indices
[docs]class NormalizedBoxCenterDecoder(gluon.HybridBlock): """Decode bounding boxes training target with normalized center offsets. This decoder must cooperate with NormalizedBoxCenterEncoder of same `stds` in order to get properly reconstructed bounding boxes. Returned bounding boxes are using corner type: `x_{min}, y_{min}, x_{max}, y_{max}`. Parameters ---------- stds : array-like of size 4 Std value to be divided from encoded values, default is (0.1, 0.1, 0.2, 0.2). clip : float, default is -1.0 If given, bounding box target will be clipped to this value. convert_anchor : boolean, default is False Whether to convert anchor from corner to center format. """ def __init__(self, stds=(0.1, 0.1, 0.2, 0.2), convert_anchor=False, clip=-1.0): super(NormalizedBoxCenterDecoder, self).__init__() assert len(stds) == 4, "Box Encoder requires 4 std values." self._stds = stds self._clip = clip if convert_anchor: self.corner_to_center = BBoxCornerToCenter(split=True) else: self.corner_to_center = None self._format = 'corner' if convert_anchor else 'center'
[docs] def hybrid_forward(self, F, x, anchors): if 'box_decode' in F.contrib.__dict__: x, anchors = F.amp_multicast(x, anchors, num_outputs=2, cast_narrow=True) return F.contrib.box_decode(x, anchors, self._stds[0], self._stds[1], self._stds[2], self._stds[3], clip=self._clip, format=self._format) if self.corner_to_center is not None: a = self.corner_to_center(anchors) else: a = anchors.split(axis=-1, num_outputs=4) p = F.split(x, axis=-1, num_outputs=4) ox = F.broadcast_add(F.broadcast_mul(p[0] * self._stds[0], a[2]), a[0]) oy = F.broadcast_add(F.broadcast_mul(p[1] * self._stds[1], a[3]), a[1]) dw = p[2] * self._stds[2] dh = p[3] * self._stds[3] if self._clip: dw = F.minimum(dw, self._clip) dh = F.minimum(dh, self._clip) dw = F.exp(dw) dh = F.exp(dh) ow = F.broadcast_mul(dw, a[2]) * 0.5 oh = F.broadcast_mul(dh, a[3]) * 0.5 return F.concat(ox - ow, oy - oh, ox + ow, oy + oh, dim=-1)
[docs]class MultiClassEncoder(gluon.HybridBlock): """Encode classification training target given matching results. This encoder will assign training target of matched bounding boxes to ground-truth label + 1 and negative samples with label 0. Ignored samples will be assigned with `ignore_label`, whose default is -1. Parameters ---------- ignore_label : float Assigned to un-matched samples, they are neither positive or negative during training, and should be excluded in loss function. Default is -1. """ def __init__(self, ignore_label=-1): super(MultiClassEncoder, self).__init__() self._ignore_label = ignore_label
[docs] def hybrid_forward(self, F, samples, matches, refs): """HybridBlock, handle multi batch correctly Parameters ---------- samples: (B, N), value +1 (positive), -1 (negative), 0 (ignore) matches: (B, N), value range [0, M) refs: (B, M), value range [0, num_fg_class), excluding background Returns ------- targets: (B, N), value range [0, num_fg_class + 1), including background """ # samples (B, N) (+1, -1, 0: ignore), matches (B, N) [0, M), refs (B, M) # reshape refs (B, M) -> (B, 1, M) -> (B, N, M) refs = F.broadcast_like(F.reshape(refs, (0, 1, -1)), matches, lhs_axes=1, rhs_axes=1) # ids (B, N, M) -> (B, N), value [0, M + 1), 0 reserved for background class target_ids = F.pick(refs, matches, axis=2) + 1 # samples 0: set ignore samples to ignore_label targets = F.where(samples > 0.5, target_ids, F.ones_like(target_ids) * self._ignore_label) # samples -1: set negative samples to 0 targets = F.where(samples < -0.5, F.zeros_like(targets), targets) return targets
[docs]class MultiClassDecoder(gluon.HybridBlock): """Decode classification results. This decoder must work with `MultiClassEncoder` to reconstruct valid labels. The decoder expect results are after logits, e.g. Softmax. Parameters ---------- axis : int Axis of class-wise results. thresh : float Confidence threshold for the post-softmax scores. Scores less than `thresh` are marked with `0`, corresponding `cls_id` is marked with invalid class id `-1`. """ def __init__(self, axis=-1, thresh=0.01): super(MultiClassDecoder, self).__init__() self._axis = axis self._thresh = thresh
[docs] def hybrid_forward(self, F, x): pos_x = x.slice_axis(axis=self._axis, begin=1, end=None) cls_id = F.argmax(pos_x, self._axis) scores = F.pick(pos_x, cls_id, axis=-1) mask = scores > self._thresh cls_id = F.where(mask, cls_id, F.ones_like(cls_id) * -1) scores = F.where(mask, scores, F.zeros_like(scores)) return cls_id, scores
[docs]class MultiPerClassDecoder(gluon.HybridBlock): """Decode classification results. This decoder must work with `MultiClassEncoder` to reconstruct valid labels. The decoder expect results are after logits, e.g. Softmax. This version is different from :py:class:`gluoncv.nn.coder.MultiClassDecoder` with the following changes: For each position(anchor boxes), each foreground class can have their own results, rather than enforced to be the best one. For example, for a 5-class prediction with background(totaling 6 class), say (0.5, 0.1, 0.2, 0.1, 0.05, 0.05) as (bg, apple, orange, peach, grape, melon), `MultiClassDecoder` produce only one class id and score, that is (orange-0.2). `MultiPerClassDecoder` produce 5 results individually: (apple-0.1, orange-0.2, peach-0.1, grape-0.05, melon-0.05). Parameters ---------- num_class : int Number of classes including background. axis : int Axis of class-wise results. thresh : float Confidence threshold for the post-softmax scores. Scores less than `thresh` are marked with `0`, corresponding `cls_id` is marked with invalid class id `-1`. """ def __init__(self, num_class, axis=-1, thresh=0.01): super(MultiPerClassDecoder, self).__init__() self._fg_class = num_class - 1 self._axis = axis self._thresh = thresh
[docs] def hybrid_forward(self, F, x): scores = x.slice_axis(axis=self._axis, begin=1, end=None) # b x N x fg_class template = F.zeros_like(x.slice_axis(axis=-1, begin=0, end=1)) cls_id = F.broadcast_add(template, F.reshape(F.arange(self._fg_class), shape=(1, 1, self._fg_class))) mask = scores > self._thresh cls_id = F.where(mask, cls_id, F.ones_like(cls_id) * -1) scores = F.where(mask, scores, F.zeros_like(scores)) return cls_id, scores
[docs]class SigmoidClassEncoder(object): """Encode class prediction labels for SigmoidCrossEntropy Loss.""" def __init__(self, **kwargs): super(SigmoidClassEncoder, self).__init__(**kwargs) def __call__(self, samples): """Encode class prediction labels for SigmoidCrossEntropy Loss. Parameters ---------- samples : np.array Sampling results with shape (B, N), 1:pos, 0:ignore, -1:negative Returns ------- (mxnet.nd.NDArray, mxnet.nd.NDArray) (target, mask) target is the output label with shape (B, N), 1: pos, 0: negative, -1: ignore mask is the mask for label, -1(ignore) labels have mask 0, otherwise mask is 1. """ # notation from samples, 1:pos, 0:ignore, -1:negative target = (samples + 1) / 2. target = np.where(np.abs(samples) < 1e-5, -1, target) # output: 1: pos, 0: negative, -1: ignore mask = np.where(np.abs(samples) > 1e-5, 1.0, 0.0) return target, mask
[docs]class CenterNetDecoder(gluon.HybridBlock): """Decorder for centernet. Parameters ---------- topk : int Only keep `topk` results. scale : float, default is 4.0 Downsampling scale for the network. """ def __init__(self, topk=100, scale=4.0): super(CenterNetDecoder, self).__init__() self._topk = topk self._scale = scale
[docs] def hybrid_forward(self, F, x, wh, reg): """Forward of decoder""" _, _, out_h, out_w = x.shape_array().split(num_outputs=4, axis=0) scores, indices = x.reshape((0, -1)).topk(k=self._topk, ret_typ='both') indices = F.cast(indices, 'int64') topk_classes = F.cast(F.broadcast_div(indices, (out_h * out_w)), 'float32') topk_indices = F.broadcast_mod(indices, (out_h * out_w)) topk_ys = F.broadcast_div(topk_indices, out_w) topk_xs = F.broadcast_mod(topk_indices, out_w) center = reg.transpose((0, 2, 3, 1)).reshape((0, -1, 2)) wh = wh.transpose((0, 2, 3, 1)).reshape((0, -1, 2)) batch_indices = F.cast(F.arange(256).slice_like( center, axes=(0)).expand_dims(-1).tile(reps=(1, self._topk)), 'int64') reg_xs_indices = F.zeros_like(batch_indices, dtype='int64') reg_ys_indices = F.ones_like(batch_indices, dtype='int64') reg_xs = F.concat(batch_indices, topk_indices, reg_xs_indices, dim=0).reshape((3, -1)) reg_ys = F.concat(batch_indices, topk_indices, reg_ys_indices, dim=0).reshape((3, -1)) xs = F.cast(F.gather_nd(center, reg_xs).reshape((-1, self._topk)), 'float32') ys = F.cast(F.gather_nd(center, reg_ys).reshape((-1, self._topk)), 'float32') topk_xs = F.cast(topk_xs, 'float32') + xs topk_ys = F.cast(topk_ys, 'float32') + ys w = F.cast(F.gather_nd(wh, reg_xs).reshape((-1, self._topk)), 'float32') h = F.cast(F.gather_nd(wh, reg_ys).reshape((-1, self._topk)), 'float32') half_w = w / 2 half_h = h / 2 results = [topk_xs - half_w, topk_ys - half_h, topk_xs + half_w, topk_ys + half_h] results = F.concat(*[tmp.expand_dims(-1) for tmp in results], dim=-1) return topk_classes, scores, results * self._scale